We first define the incidence matrix of a graph. Let \(G=(V,E)\) be a graph where \(V=\{v_1,v_2,\ldots,v_n\}\) and \(E=\{e_1,e_2,\) \(\ldots,e_m\}\). The incidence matrix of \(G\) is the \(n\times m\) matrix \(\bs{M}\) such that \[ \bs{M}(i,j) = \begin{cases} 1, & \text{if \(v_i \in e_j\)}\\[2ex] 0, & \text{otherwise.}\end{cases} \]